∞
∑ 2/(n^2 - 1)
n=2
2/(n^2 - 1)
2/((n + 1)(n - 1))
2/((n + 1)(n - 1)) = A/(n + 1) + B/(n - 1)
2(n + 1)/((n + 1)(n - 1)) = A + B(n + 1)/(n - 1)
2/(n - 1) = A + B(n + 1)/(n - 1)
2/(-1 - 1) = A + B(-1 + 1)/(-1 - 1)
2/(-2) = A + B(0)/(-2)
[-1] = A
2(n - 1)/((n + 1)(n - 1)) = A(n - 1)/(n + 1) + B
2/(n + 1) = A(n - 1)/(n + 1) + B
2/(1 + 1) = A(1 - 1)/(1 + 1) + B
2/(2) = A(0)/(2) + B
[1] = B
2/((n + 1)(n - 1)) = -1/(n + 1) + 1/(n - 1)
N
∑ A/(n + 1) + B/(n - 1)
n=2
N
∑ -1/(n + 1) + 1/(n - 1)
n=2
┌── n = 2 ─┐ ┌── n = 3 ─┐ ┌── n = 4 ─┐ ┌── n = 5 ─┐ ┌──────── n = N ──────┐
= (-1/3 + 1/1) + (-1/4 + 1/2) + (-1/5 + 1/3) + (-1/6 + 1/4) ... + (-1/(N + 1) + 1/(N - 1)
┌── n = 2 ─┐ ┌── n = 3 ─┐ ┌── n = 4 ─┐ ┌── n = 5 ─┐ ┌──────── n = N ──────┐
= (-1/3 +
1/1) + (-1/4 + 1/2) + (-1/5 + 1/3) + (-1/6 + 1/4) ... + (-1/(N + 1) +
1/(N - 1)
┌── n = 2 ─┐ ┌── n = 3 ─┐ ┌── n = 4 ─┐ ┌── n = 5 ─┐ ┌──────── n = N ──────┐
= (-1/3 +
1/1) + (-1/4 + 1/2) + (-1/5 + 1/3) + (-1/6 + 1/4) ... +
(-1/(N + 1) + 1/(N - 1)
┌── n = 2 ─┐ ┌── n = 3 ─┐ ┌── n = 4 ─┐ ┌── n = 5 ─┐ ┌──────── n = N ───────┐ ┌────────────── n = (N + 1) ───────┐
= (-1/3 +
1/1) + (-1/4 + 1/2) + (-1/5 + 1/3) + (-1/6 + 1/4)
... + (-1/(N + 1) + 1/(N - 1)) + (-1/((N + 1) + 1) + 1/((N + 1) - 1))
┌── n = 2 ─┐ ┌── n = 3 ─┐ ┌── n = 4 ─┐ ┌── n = 5 ─┐ ┌──────── n = N ───────┐ ┌────────────── n = (N + 1) ───────┐
= (-1/3 + 1/1) + (-1/4 + 1/2) + (-1/5 + 1/3) + (-1/6 + 1/4) ... + (-1/(N + 1) + 1/(N - 1)) + (-1/((N + 1) + 1) + 1/((N + 1) - 1))
S = lim 1/1 + 1/2 - 1/(N + 1) - 1/((N + 1) + 1)
N→∞
S = 1/1 + 1/2 - 1/(∞ + 1) - 1/((∞ + 1) + 1)
S = 1/1 + 1/2 - 1/(∞ + 1) - 1/(∞ + 1)
S = 1/1 + 1/2 - 1/∞ - 1/∞
S = 1/1 + 1/2 - 0 - 0
S = 1/1 + 1/2
S = 2/2 + 1/2
S = [3/2]